

IT Systems Engineering | Universität Potsdam

Structuring Acyclic Process Models

Artem Polyvyanyy Luciano García-Bañuelos Marlon Dumas

Business Process Management September 2010, Hoboken, NJ

Motivation: *Graph- or Block-structured Modeling?*

A process model is *block-structured* if splits and joins are always paired into Single-Entry-Single-Exit (SESE) fragments; otherwise *graph-structured*

Premise: block-structured is "better"

- Easier to understand
- Less error-prone
- Easier to automatically layout
- Easier to analyze (aggregate QoS, time constraint checking, etc.)
- Easier to abstract (zoom in/out)
- Can be expressed by block-structured languages, e.g., BPEL
- Easier execution optimization (resource allocation)

Research Problem: Structuring Process Models

Given an **arbitrary <u>acyclic</u>** (graph-structured) process model ...

Does a behaviorally equivalent block-structured process model exist?

And if such a model exists, **now** can it be **constructed?**

Behavioral Equivalence: Bisimulation

There exist many notions of behavioral equivalence [van Glabbeek 1990]

Sequential simulation of a process model

The Refined Process Structure Tree (RPST)

- The RPST is a technique for parsing process models into a hierarchy of canonical Single-Entry-Single-Exit (SESE) fragments [Vanhatalo, Völzer, and Koehler 2008], [Polyvyanyy, Vanhatalo, and Völzer 2010]
- The RPST is unique, modular, and can be computed in linear time

- \blacksquare A *trivial* (T) fragment consists of a single edge, e.g., (i,t)
- A polygon (P) fragment consists of a sequence of fragments, e.g., ((i,t), B1, (z,o))
- A bond (B) fragment consists of a set of fragments that share two nodes, e.g., {P2, P3}
- A rigid (R) fragment is neither trivial, nor polygon, nor bond, e.g., fragment R1

Taxonomy of Process Fragments

- Trivials, polygons, and bonds are structured process fragments
- Rigid fragments explicitly define what makes process models unstructured

- A homogeneous rigid contains either only XOR or only AND gateways
- A heterogeneous rigid contains a mixture of AND/XOR gateways
- Rigid fragments are classified as cyclic or acyclic
- Cyclic homogeneous AND rigids are <u>not</u> considered as they specify *livelocks*

State of the Art: Structuring Process Models

7

Techniques for structuring flowcharts (homogeneous XOR rigids) date back to the late '70s [Oulsnam 1982]

There exist **arbitrary** process models that do <u>not</u> have (FCB-)**equivalent** process models [Kiepuszewski et al. 2000]

A Z-structure

An overlapping structure

Overlapping structures (a special type of acyclic heterogeneous rigids) have an (FCB-)equivalent process models

[Liu and Kumar 2005]

Semantics

Execution semantics of process models is defined by means of a mapping to labeled (free-choice) workflow systems

■ The behavior of a concurrent system can be described by a partial order (for Petri nets by [Nielsen, Plotkin, and Winskel 1980])

A concurrent run of a system

Abstraction of a run

Complete Prefix Unfolding

The technique of **unfolding** is based on a partial order semantics of Petri nets

An unfolding is a "compact" representation of **all runs** of a system together with

all points where a choice occurs

between qualitatively different behaviors of a system

A complete prefix unfolding

is a finite initial part of the unfolding that contains **full information** about the reachable states of a system [McMillan 1995]

The structure of an unfolding is given by a net with a "simple" structure – an occurrence net

A>C1

A#D2

B#A

C2||D2

B>D2 $c_{i,a} c_{i,a} e_{a} c_{a,u} e_{u} c_{u} c_{$

- Two transitions of an occurrence net are in one of the following relations:
 - □ A and B are in causal relation (A>B), if and only if there exists a path from A to B
 - A and B are in conflict (A#B), if and only if there exist two distinct transitions t1, t2 that share an input place and there exist a path from t1 to A and a path from t2 to B
 - A and B are in concurrency (A||B) relation, if and only if A and B are neither in causal, nor in conflict relation

Behavioral Equivalence: Fully Concurrent Bisimulation

11

Two process models are FCB-equivalent ...

... if and only if, for each abstraction of a run in one system there exists an isomorphic abstraction of a run in another system, and vice versa

... if and only if, (complete prefix) unfoldings of both models expose same

ordering relations

Structuring Process Models: Core Idea

13

Structuring Process Models: Ordering Relations Graph

A) C B) D

A 2-structure

An ordering relations graph

A complete graph of relations of the same type can be represented as a block

A total order of causal relations can be represented as a sequence

14

Structuring Process Models: The Modular Decomposition Tree (MDT)

- A module is a set of nodes with uniform relations to all neighbors:
 - A trivial (T) module is a singleton node of a graph
 - A linear (L) module is a total order on a set of nodes of a graph
 - A *complete* (C) module is a complete graph, or a clique
 - A *primitive* (P) module is neither trivial, nor linear, nor complete
- The MDT is unique and can be computed in linear time

Structuring Process Models

Let G be an ordering relations graph. The MDT of G has no primitive module, if and only if there exists a well-structured process model W such that G is the ordering relations graph of W.

Conclusion

- We proposed a technique for structuring acyclic process models
 - Under an FCB-equivalence notion
 - Block-structured models do not introduce variables to encode control-flow constraints
 - Task duplication depends on the "quality" of the complete prefix unfolding
 - Homogeneous AND rigids can be structured in linear time
 - In general, the complexity of structuring algorithm is determined by the exponential complexity of the unfolding
- Future work
 - Structuring cyclic process models
 - Introduction of variables to encode control-flow constraints
 - Partial structuring of process models
- An early prototype is available at: http://code.google.com/p/bpstruct/