

Machine-Assisted Design of Business Processes Using Descriptor Space Analysis

Maya Lincoln, Technion – Israel Institue of Technology

<u>Avigdor Gal</u>, Technion – Israel Institue of Technology

Mati Golani, Ort Braude College

Background/1

- Business Process Repositories describe the "knowhow" of organizations
- Business Process Repositories can be used for:
 - Management of regulations and compliance enforcement
 - Management and control of IT systems
 - Analysis and improvement of processes
 - Documentation and training
 - Mergers and acquisitions planning
 - Performance monitoring

Motivation /1

- Process modeling is considered a manual, labor intensive task
 - The outcome depends on personal domain expertise
 - Errors or inconsistencies can lead to bad process performance and high process costs
- Hence, automating the reuse of constructs, gathered from predefined process models does not only save design time but also supports non-expert designers in creating new business process models

Motivation /2 – An Example

- Consider an airport process model that incorporates processes related to passengers check-in before boarding an airplane
- Now, suppose that the airport management desires to extend the services provided to its customers by offering a new service: "check-in from home"
- In addition, it is also desired to outline the "check-out" process model as an extension of the current repository
- The existing repository encapsulates know-how and business logic that are relevant and useful for the creation of these new models
 - e.g. passenger check-in policies and procedures regarding security, luggage handling, passenger handling and document validation

Motivation /3 – An Example

- In the above scenario, it would have been helpful for the process designer to design the new processes using a supporting system that relies on the reuse of previous knowhow instead of creating the model manually from scratch
- To illustrate our methodology we use a real-world case study for airport process design
- Based on a "check-in" process that already exists in the repository, we demonstrate how it is possible to design the two, above mentioned, new business processes

Research objective

- Propose an effective method for designing new business process models related to any functional domain, without limiting the focus to a specified functional area
- Delineate new business process models according to the organization's specific business logics and business rules

Related work

- Most previous work focused on supporting the design of alternative process steps within existing process models
- Less work has been carried out on the design of new process models
- The few works that addressed the design of new models were limited to a specific domain such as production management

The Descriptor Model /1

An example: the passenger check-in process

The process descriptor model

A Descriptor Model for Process Design /1

Object taxonomies

An object hierarchy model

An object lifecycle model

A Descriptor Model for Process Design /2

Action taxonomies

An action hierarchy model

An action lifecycle model

The Descriptor Space - Definition

- A quad-dimensional space of activities
 - Each space coordinate represents an activity as a quadruple AC = <0,0Q,A,AQ>
 - Some coordinates represent "real" activities from the process repository, while others represent "virtual" activities
- The distance between every two coordinates

$$Dist(AC_i, AC_j) = OD_{ij} + AD_{ij} + OHD_{ij} + AHD_{ij}$$

- OD_{ij} the object distance: the minimal number of steps connecting Oi and Oj in the object lifecycle model
- AD_{ij} the action distance: the minimal number of steps connecting Ai and Aj in the action sequence model
- OHD_{ij} the object hierarchy distance: the minimal number of steps connecting Oi with Oj in the object hierarchy model
- AHD_{ij} the action hierarchy distance, defined similarly to OHD_{ij}
- A "no-connection" distance is used when OD/AD are undefined

The Descriptor Space – An Example for Calculating Distances

- Consider the two descriptors:
 - AC_i = (luggage,hand,check,null) and
 - AC_i = (luggage,null,get,from the conveyer belt)
- To navigate from AC_i to AC_j:
 - We move one step up in the object hierarchy (OHD = 1) from the object Hand luggage to the object Luggage
 - Then, we recede two steps back from the action Check in the action sequence (AD = 2), resulting with the action "Get"
 - Finally, we drill down one step within the action hierarchy (AHD = 1), and retrieve the action "Get" from the conveyer belt, and by that we reach the target descriptor
 - The total distance between the two above coordinates is 4

- Suggesting the First Process Activity
 - Goal
 - Search the target object and its more specific objects within the object hierarchy model
 - Match it with an initial action that can be acted on this object
 - Compose first activity suggestions
 - Retrieved objects and the first action that acts upon them
 - Sort and flag results

- Refining the Currently Suggested Process Activity (e.g. "Get luggage")
 - Action and Object Refinement
 - E.g. "Get luggage from the conveyer belt", "Get hand luggage"
 - Action and Object Generalization
 - Advance an Object's State or an Action
 - The object "Standard luggage" represents a more advanced state of the object "Luggage"
 - The action "Give" follows "Get" in the action sequence applied on "Luggage"
 - => The following refinement suggestion is constructed:
 "Get standard luggage",and "Give luggage"

- Refining the Currently Suggested Process Activity (continue)
 - Recede to a Less Processed State of the Object or to a Former Action
 - E.g. the action "Present" is acted on "Luggage" before this object is taken (before the action "Get" is applied), hence creating the refinement option: "Present luggage"
 - Move to a Sibling Action or Object
 - E.g. a navigation to sibling actions to "Get" retrieves a list of activities that includes: "Check luggage" and "Take luggage"
 - In the same manner, a search for sibling objects, retrieves a list of activities, that includes: "Get passport" and "Get visa"

- Suggesting the Next Process Activity
 - Goal: take the process execution flow one step forward
 - Two alternative ways:
 - Advancing to a later action that acts on the currently accepted object
 - E.g. "Give passport" -> "Check passport" / "Return passport"
 - Proceeding to a sibling object combined with the reference activity's action
 - Rationale: in some process flows the same action is operated on sibling objects in order to fulfill a certain process goal (e.g. Send standard luggage -> Send excess luggage)
 - E.g. "Give passport"-> "Give visa" / "Give luggage" / "Give information"

- Preparing a Set of Output Options
 - Sort by Proximity to the Reference Activity
 - By calculating distances
 - Internally Sort by Similarity to Processes in the Repository
 - No change the suggested activity is represented "as is" within the underlying business process repository. No mark
 - Slight modification there is an actual activity in the underlying business process repository containing the same object and action with different qualifiers. Marked with "~"
 - Major change the object and action within the suggested activity were not coupled in any of the activities within the underlying business process repository. Marked with "M".
 - Add a Random Option
 - Flag Each Option
 - E.g. "[1,~]"

Implementation

- Server side logic is implemented in PHP using a MySql database
- The client runs within an Internet browser and is implemented in HTML and JavaScript, with AJAX calls to the server

- Based on the aviation process repository
- Designing a new process: "Passenger Checkout"
 - Extends the process repository by handling passenger related activities conducted after an airplane arrives at its destination
 - Final design output:

Case Study – process generation system/2

Step 1: The process designer's input

Case Study process generation system/3

- Step 2: First activity (defined by the designer) is: "Give passport"
- Step 3: Next activity suggestions:

- Step 4: The designer selects the option "Check passport"
- Step 5: The designer selects the option "Give luggage" as a next future activity (will be required at the customs point)
- Step 6: The designer then asks the process navigator to provide next step options and receives:
 - [1] Check luggage, [2] Give visa, [2,M] Give information
- Step 7: The designer selects the first option, "Check luggage"

- Step 8: The designer asks for previous activity suggestions to "Give luggage"
 - Rationale: by reviewing the newly designed process, she realizes that an activity may be missing before Give luggage, since the passenger may not have carried his luggage with him to the airplane.
- Step 9: Retrieved previous step suggestions (by navigating backwards in the action sequence)
- Step 10: The designer selects the option: "Get luggage" and asks the process navigator to refine it
 - Reason: it seems to lack sufficient details to express the activity required in this context

- Step 11: The process navigator presents refinement suggestions
- Step 12: The designer selects the option: "[1,~] Get luggage from the conveyer belt"
 - Note that this activity was selected although it was not represented "as is" in the business process repository

- Designing the new process: "Send luggage from home"
- Output:

- An interesting observation is the usage of the activity "Put luggage in vehicle"
 - While the original business process repository contained the action "Put in vehicle" applied only to the object "Baby carriage", the terminating activity combines this action with the object: "Luggage"

Experiments - Data /1

- We chose a set of 14 processes from the Oracle Business Model (OBM)
 - nine business processes from the Procurement category (96 activities)
 - five business processes from the Inventory category (31 activities)
- The Procurement data set contains related, sequential activities and therefore encapsulates a focused operational area
- The Inventory data set encapsulates a loosely coupled business logic regarding an extended business area

Experiments - Evaluation Methodology /2

- At each experiment, a single process was removed from the database and was reconstructed using the "New Process Design Assistant" software (NPDA)
- This way, the missing process serves as the final design goal, enabling us to measure the method's effectiveness in an objective manner
- Each experiment was conducted according to the following steps:
 - Remove one of the processes from the database so that the database will not contain any of its activities
 - Run the NPDA and select at each phase the option (activity) compatible with the removed process
 - Handle cases in which no option represents the goal activity

Experiments - Methodology /2

- At each experiment, a single process was removed from the database and was reconstructed using the "New Process Design Assistant" software (NPDA)
- This way, the missing process serves as the final design goal, enabling us to measure the method's effectiveness in an objective manner
- Each experiment was conducted according to the following steps:
 - Remove one of the processes from the database so that the database will not contain any of its activities
 - Run the NPDA and select at each phase the option (activity) compatible with the removed process
 - Handle cases in which no option represents the goal activity

Experiment Results/1

Table 1. Experiment results.

Column #	1	2	3	4	5	6	7
Column name	# of	# of	% of	Avg. #	Avg.	Avg.	Avg.
	total	total	goal ac-	of steps	location	location	location
	pro-	activi-	tivities	per	of	of	of the
	cesses	ties in	repre-	design	correct	correct	correct
	in DB	DB	sented in	phase	option	option	option
			the DB		in 'next	in 'refine	per
					activity'	activity'	design
							phase
Avgall	14	127	89.0%	2.0	1.2	2.8	2.6
AvgProcurement	9	96	90.6%	1.9	0.8	3.0	2.8
AvgInventory	5	31	83.9%	2.1	1.9	2.4	2.3

Experiment Results/2

Table 2. Distribution of successful predictions vs. the number of required refinements.

# of refinements	0	1	2	3	4	5	6	7	8	9
% of successful	12%	35%	27%	12%	4%	2%	2%	1%	1%	3%
predictions										
Cumulative	12%	48%	75%	88%	92%	94%	96%	96%	97%	100%

Conclusions/1

- The proposed method, software tool, and experiments provide a starting point that can alreadybe applied in real-life scenarios, yet several research issues remain open, including:
- (1) an extended empirical study to further examine the quality of newly generated processes;
- (2) an extended activity decomposition model to include
- an elaborated set of business data and logic (e.g., roles and resources); and
- (3) defining a learning mechanism that will take into account previous designer preferences and adjusting (in real time) the process delineator mechanism.

Conclusions/2

- As a future work we intend to investigate further language semantics by using more advanced natural language processing techniques, as well as semantic distances between words.
- Finally, we intend to apply the techniques we have
- developed to create new methods for workflow validation

Thank you!